
Graph Neural Networks
for Missing Data Imputation

Candidate: Indro Spinelli

Advisors: Prof. A. Uncini, Dr. S. Scardapane

Sapienza University of Rome



Introduction



Dataset importance in ML

The availability of high-quality training datasets is a key factor for deploying machine
learning models in the real world.

Amount of lost sleep by Andrej Karpathy over...

Models  Datasets

PhD Tesla

Indro Spinelli 22/10/2019 1



The Problem of Missing Data

Many real-world datasets are affected by the problem of missing values.

ID A B C

1 2.7 cat 0
2 0.5 NaN 1
3 NaN dog NaN

Fitting a model or performing training with a dataset that has a lot of missing values can
drastically impact the model’s quality.

For this reason, the field of Missing Data Imputation (MDI) has attracted significant attention.
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State Of The Art

A great number of methods have been proposed to solve the MDI task.

I mean imputation Little et al. 1986

I MICE Van Buuren et al. 2011

I k-nearest neighbors Acuna et al. 2004

I random forest Stekhoven et al. 2011

I linear models Lakshminarayan et al. 1996

I matrix factorization Mnih et al. 2008

I support vector machines Wang et al. 2006

I neural networks Yoon et al. 2018

We will use them to validate the performance of our contribution.
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Predictive Imputation

Many of these methods derive from classical machine learning algorithms (e.g., for regression
and classification) with a few modifications.

This is possible because data imputation can be framed under a predictive framework1.

Some of these algorithms build a global model for data imputation, others instead, use similar
data points to infer the missing components.

1Dimitris Bertsimas, Colin Pawlowski, and Ying Daisy Zhuo. “From Predictive Methods to Missing Data
Imputation: An Optimization Approach.”. In: Journal of Machine Learning Research 18 (2017), pp. 196–1.
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Contribution



Our contribution

The contribution of this thesis work consists of a new framework for MDI, GINN2(Graph
Imputation Neural Network), that exploits both similar data points for each imputation and a
global model built from the overall data set.

This is possible thanks to a new class of neural network that is able to model and exploit
structured information (in the form of relationships between samples), by working in the
domain of graphs.

2Indro Spinelli, Simone Scardapane, and Aurelio Uncini. “Missing Data Imputation with Adversarially-trained
Graph Convolutional Networks”. In: Submitted to Neural Networks (Elsevier) (2019).
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GINN Schematics
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An Example on Iris

The similarity graph describes the structural proximity between samples. For each node the
color intensity represents the number of connections and the size the number of missing
features.
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Graph convolutional layer

The graph convolutional layer3 is the fundamental building block of our graph autoencoder.

2D Convolution vs Graph Convolution

Pixel/Node updated

Convolution

Graph Convolution

3Thomas N Kipf and Max Welling. “Semi-supervised classification with graph convolutional networks”. In:
Proc. 2017 International Conference on Learning Representations (ICLR). 2017.
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Graph Autoencoder

Autoencoder

H = σ (XΘ1) ,

X̂ = σ (HΘ2) .

Graph Autoencoder

H = σ (LXΘ1) ,

X̂ = σ (LHΘ2) .

I L is the normalized version of the graph Laplacian.

I The Laplacian is a matrix representation of a graph.

I LX propagates the information across the 1-hop neighbors.

I LH propagates the information across the 2-hop neighbors.
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Our’s Graph Convolutional Autoencoder

H = ReLU (LXΘ1) ,

X̂ = Sigmoid
(
LHΘ2 + L̃XΘ3

)
.

N N

N

N N

Input

Encoder Imputer

Output

Skip

Indro Spinelli 22/10/2019 10



Adversarial Training

To improve the quality of the imputed values, we use an adversarial training strategy where a
critic, a feedforward network in our case, learns to distinguish between imputed and real data.

The autoencoder is thus trained to fool the critic with an additional component in the loss
function.

Having an adversarial loss during reconstruction forces the imputed vector to lie close to the
natural distribution of the original data.
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Losses

Graph Convolutional Autoencoder

LReconstruction = αMSE(X, X̂) + (1− α)CE(X, X̂) ,

LTotal = LReconstruction + λLAdversarial .

I MSE(X, X̂) is the mean squared error for numerical variables.

I CE(X, X̂) is the cross entropy loss for categorical variables.
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Experimental Evaluation



Metrics

We used a selection of 20 datasets having numerical, categorical and mixed feature vectors, by
applying 4 different levels of missing elements: 10%, 20%, 30%, and 50%. We compared
GINN against 6 state-of-the-art competitors.

First, we evaluated the reconstruction performances in terms of RMSE and MAE.

Then we evaluated the accuracy of post-imputation prediction with 4 different classifiers in
order to see which imputation methods permitted to achieve the best accuracy over a common
undamaged test set.

This resulted in a total of 20× 4× 5 = 400 experiments, each one ranging from 2 minutes to
12 hours approximately.
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Reconstruction Performances
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Predictive Performances
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(left) and random forest (right) classifiers.
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Real World Missingness

We evaluate the performance of GINN also on real-world datasets with pre-existing (i.e., not
artificially induced) missing values. We show the accuracy and computational cost of the
method when compared to other state-of-the-art approaches on the Mammographic mass
dataset.
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Conclusions



Conclusions

I The main contribution of this thesis work is the introduction of a novel technique for
missing data imputation, where we used a new graph convolutional autoencoder to
reconstruct the full dataset starting from the damaged one.

I We showed through an extensive numerical simulation that our method significantly
outperforms state-of-the-art approaches for missing data imputation, especially for large
values of noise.
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Conclusions

I Different architectures.

I The extension to other types of noisy data beyond tabular data like images and time
series.

I Training our imputation module together with a classification step in an end-to-end
fashion.

Indro Spinelli 22/10/2019 18



Thank you!
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